Crystallographic and magnetic properties of NdFe_{10.7}TiM_{0.3}(M=B, Ti)

Chul Sung Kim, Young Jong Lee, and Seung Wha Lee Department of Physics, Kookmin University, Seoul 136-702, Korea

Y. B. Kim and C. S. Kim

Korea Research Institute of Standards and Science, Taejon 305-606, Korea

NdFe_{10.7}TiM_{0.3}(M=B, Ti) has been studied with x-ray diffraction, Mössbauer spectroscopy, and a vibrating sample magnetometer. The alloys were prepared by arc-melting under an argon atmosphere. The NdFe_{10.7}TiB_{0.3} exhibits a pure single phase, whereas the NdFe_{10.7}Ti_{1.3} contains some α -Fe, from x-ray and Mössbauer measurements. The NdFe_{10.7}TiB_{0.3} has the ThMn₁₂-type tetragonal structure with a_0 =8.587 Å and c_0 =4.788 Å. The Curie temperature (T_C) is 570 K from Mössbauer spectroscopy performed at various temperatures ranging from 13 to 770 K. Each spectrum below T_C was fitted with five subspectra of Fe sites in the structure $(8i_1, 8i_2, 8j_1, 8j_2,$ and 8f). The area fraction of the subspectra at room temperature are 16.4%, 8.2%, 14.8%, 21.3%, and 39.3%, respectively. Magnetic hyperfine fields for the Fe sites decrease on the order of $H_{\rm hf}(8i) > H_{\rm hf}(8j) > H_{\rm hf}(8f)$. The average hyperfine field $H_{\rm hf}(T)$ of the NdFe_{10.7}TiB_{0.3} shows a temperature dependence of $[H_{hf}(T) - H_{hf}(O)]/H_{hf}(O) = -0.39(T/T_C)^{3/2} - 0.17(T/T_C)^{5/2}$ for $T/T_C < 0.7$, indicative of spin-wave excitation. Annealing the alloy at around T_C for 60 min resulted in a two phase microstructure consisting of a ThMn₁₂-type structure and α -Fe. © 1996 American *Institute of Physics.* [S0021-8979(96)31908-4]