Crystallographic and Mössbauer Studies of Sintered Nd-Fe-B Magnet

Yong Hui Li, Jung Tae Lim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Sung Yong An, Kang Ryong Choi and Moonhee Choi Corporate R&D Institute, Samsung Electro-Mechanics, Suwon 443-743, Korea

(Received 11 April 2013, in final form 19 April 2013)

Nd-Ga-Fe_{bal.}-Nb-B alloy with Nd₂Fe₁₄B structure was synthesized by using the strip casting method. The Nd-Ga-Fe_{bal.}-Nb-B alloy retains the tetragonal structure with lattice constants $a_0 = 8.802$, and $c_0 = 12.215$ Å. Mössbauer spectra were recorded at various temperatures ranging from 4.2 to 620 K. The Curie temperature (T_C), and Debye temperature (Θ_D) were determined to be $T_C = 613$, and $\Theta_D = 471.4$ K, respectively. Each spectrum below T_C was fitted with six subspectra of Fe sites ($8j_1$, $8j_2$, $16k_1$, $16k_2$, 4c, and 4e) based on the occupancy of Fe ions probability distribution. The area ratios of subspectra at 4.2 K are 12.8, 12.8, 29.6, 29.1, 6.8, and 9.1%, respectively. The magnetic hyperfine fields (H_{hf}) for the Fe sites decrease in the order $H_{hf}(8j_2) > H_{hf}(16k_2) > H_{hf}(4c) > H_{hf}(16k_1) > H_{hf}(8j_1) > H_{hf}(4e)$.

PACS numbers: 75.50.Pp, 75.60.Jk, 76.80.+y

Keywords: Permanent magnet, Crystal structure, Curie temperature, Mössbauer spectroscopy

DOI: 10.3938/jkps.62.1641