Neutron Diffraction and Magnetic Properties of Ba₂Co₂Fe₁₂O₂₂: Co₂Y

Chan Hyuk Rhee, Jung Tae Lim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Sung Back KIM

Advancement for College Education Center, Konyang University, Chungnam 320-711, Korea

(Received 31 May 2012, in final form 8 August 2012)

Polycrystalline Y-type barium cobalt ferrite (Ba₂Co₂Fe₁₂O₂₂; Co₂Y) was synthesized using by the conventional ceramic method. At temperatures below 260 K, the crystal structure of Co₂Y was determined to be hexagonal with the space group $R\bar{3}m$. It showed a soft ferrimagnetic behavior with $H_c = 113$ Oe at 297 K and the Néel temperature (T_N) was determined to be 615 K. Most of the super-lattice peaks of Co₂Y coming from the spin structure decreased with increasing temperature. However, the super-lattice peak at 21.8° increased with increasing temperature at temperatures above 200 K. In addition, we observed a change in the slope of the zero-field cooled magnetization under a low field of 0.01 T at 215 K due to a magnetic structure transition from a helical to a ferrimagnetic spin structure.

PACS numbers: 61.12.Ld, 75.25.+z, 75.70.Gd

Keywords: Y-type Ba-ferrite, Helical spin structure, Neutron diffraction

DOI: 10.3938/jkps.62.1919