Mössbauer Studies of Olivine $Fe_{1-y}Mn_yPO_4$ Woo Jun Kwon, In-Bo Shim and Chul Sung Kim* Department of Physics, Kookmin University, Seoul 136-702, Korea (Received 31 May 2012, in final form 17 September 2012) The olivine-structured Fe_{1-y}Mn_yPO₄ (y = 0.0, 0.1, and 0.3), a possible cathode material for lithium-ion secondary battery, has been studied by using x-ray diffraction (XRD) and Mössbauer spectroscopy. These Fe_{1-y}Mn_yPO₄ samples were prepared by using the chemical lithium deinter-calation process from LiFe_{1-y}Mn_yPO₄. The crystal structures of the Fe_{1-y}Mn_yPO₄ samples were determined to be orthorhombic (space group Pnma) at room temperature by using the Rietveld refinement method. From the Mössbauer spectra at room temperature, the electric quadrupole splitting (ΔE_Q) and the isomer shift (δ) values of the Fe_{1-y}Mn_yPO₄ were determined to be $\Delta E_Q = 1.512$ mm/s, and $\delta = 0.31$ mm/s for $y = 0.0, \Delta E_Q = 1.502$ mm/s, and $\delta = 0.31$ mm/s for y = 0.1, and $\Delta E_Q = 1.382$ mm/s, and $\delta = 0.31$ mm/s for y = 0.3. The difference in the ΔE_Q values for Fe_{1-y}Mn_yPO₄ samples with varying Mn concentrations can be explained by the change in the exchange interaction due to the dependence of the asymmetry in the FeO₆ octahedral sites on the Mn concentration. PACS numbers: 61.10.Nz, 76.80.+y Keywords: Fe_{1-v}Mn_vPO₄, x-ray diffraction, Mössbauer spectroscopy DOI: 10.3938/jkps.62.1922