Study of Site Occupancy in $Zn_xFe_{3-x}O_4$ Microspheres Based on Mössbauer Analysis

Yong Hui Li¹, Sung Yong An², and Chul Sung Kim¹

¹Department of Physics, Kookmin University, Seoul 136-702, Korea ²Corporate R&D Institute, Samsung Electro-Mechanics, Suwon 443-743, Korea

The crystal structure of $\operatorname{Zn}_x\operatorname{Fe}_{3-x}\operatorname{O}_4$ (x=0,0.05,0.1,0.2,0.4), prepared by a solvothermal reaction technique, showed cubic spinel structure with space group Fd-3m based on Rietveld refinement. The lattice constant a_0 increased linearly with the Zn contents from x=0 to 0.4. Field emission scanning electron microscope (FESEM) and high resolution transmission electron microscope (HRTEM) measurements showed that the size of the monodispersed particles was around $300\sim500$ nm. With increasing Zn contents M_s and H_c values at 295 K increase with x up to 0.05 and then decrease monotonously as x increases above 0.4, respectively. We have analyzed the Mössbauer spectra as 4 set with tetrahedral A site and octahedral B_1 , B_2 , and B_3 sites at 295 K and 4.2 K. From the isomer shift values, the valence states of A, B_1 and B_3 sites were determined to be ferric (Fe³⁺), while that at B_2 site to be ferrous (Fe²⁺). The corresponding area ratio of A and B_2 sites decreased by $40\sim25$ and $20\sim8\%$, while that of B_1 , B_3 sites increased by $40\sim52$ and $9\sim15\%$, with increasing the Zn contents. This site preference, depending on the amount of $2n^{2+}$ ion substituted in A and B sites, affects the electron hopping between $2n^{2+}$ ions, and changed the super-exchange interaction $2n^{2+}$ ion substituted in $2n^{2+}$ between $2n^{2+}$ and $2n^{2+}$ ions, and changed the super-exchange interaction $2n^{2+}$ in substituted in $2n^{2+}$ and $2n^{2+}$ in substituted in $2n^{2+}$ in 2

Index Terms—Cation distribution, magnetism, Mössbauer spectroscopy, Zn_xFe_{3-x}O₄ microspheres.