Highly activated K-doped iron carbide nanocatalysts designed by computational simulation for Fischer-Tropsch synthesis† Ji Chan Park,^a Sang Chul Yeo,^b Dong Hyun Chun,^a Jung Tae Lim,^c Jung-Il Yang,^a Ho-Tae Lee,^a Sungjun Hong,^a Hyuck Mo Lee,^b Chul Sung Kim^c and Heon Jung^{*a} Although the reaction results of numerous iron-based Fischer–Tropsch synthesis catalysts containing various promoters have been reported, the research on their theoretical foundation is still insufficient. In the present work, highly activated K-doped χ -Fe₅C₂/charcoal nanocatalysts were designed using calculations based on density functional theory (DFT), and then prepared using a melt-infiltration process and a subsequent incipient-wetness method of K precursors. The catalyst at K/Fe = 0.075 in an atomic ratio that bears small iron carbide nanoparticles of ~18 nm showed the highest activity (1.54 \times 10⁻⁴ mol_{CO} g_{Fe}⁻¹ s⁻¹) and the best hydrocarbon yield (1.41 \times 10⁻³ g_{HC} g_{Fe}⁻¹ s⁻¹), as well as a good selectivity for gasoline-range (C₅-C₁₂) hydrocarbon products in the high-temperature Fischer–Tropsch reaction.