Crystallization and Magnetic Properties of Fe₈₄B₉Nb₇ Amorphous Ribbons Chul Sung Kim, Sung Baek Kim, K. Y. Kim*, J. S. Lee*, and T. H. Noh* Department of Physics, Kookmin University, Seoul 136-702, Korea *Division of Metals, Korea Institute of Science and Technology, Seoul 136-791, Korea Abstract — The amorphous Fe₈₄B₉Nb₇ and its nanocrystallization have been studied by x-ray, Mössbauer spectroscopy and magnetic moment measurements. The average hyperfine field H_{hf}(T) of the amorphous state shows a temperature dependence of [$H_{hf}(T) - H_{hf}(\theta)$] / $H_{hf}(\theta) = -0.52$ (T/T_C)^{3/2} - 0.34 (T/T_C)^{5/2} for T/T_C < 0.7, indicative of spin-wave excitation. The quadrupole splitting just above the Curie temperature T_C is 0.41 mm/s, whereas the average quadrupole shift below T_C is zero. The Curie and crystallization temperatures are determined to be T_C = 330 K and T_x = 750 K, respectively, for a heating rate of 5 K/min. The occupied area of the nanocrystalline phase at the optimum annealing temperature is about 73%.