Highly selective iron-based Fischer-Tropsch catalysts activated by CO₂-containing syngas Dong Hyun Chun^a, Ji Chan Park^a, Seok Yong Hong^a, Jung Tae Lim^b, Chul Sung Kim^b, Ho-Tae Lee^a, Jung-Il Yang^a, SungJun Hong^a, Heon Jung^{a,*} *Clean Fuel Laboratory, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon 305-343, Republic of Korea b Department of Nano and Electronic Physics, Kookmin University, 77 Jeongneung-Ro, Seongbuk-Gu, Seoul 136-702, Republic of Korea ## ARTICLE INFO Article history: Received 29 March 2014 Fischer-Tropsch synthesis (FTS) was carried out over precipitated iron-based catalysts activated by syn- Revised 30 May 2014 Accepted 9 June 2014 Keywords: Fischer-Tropsch synthesis Precipitated iron-based catalysts Activation study CO2-containing syngas ABSTRACT gas (H2 + CO) with different amounts of CO2 (0%, 20%, 33%, and 50%). The activation using CO2-containing syngas significantly suppressed the production of undesired products, CH_4 and C_2 - C_4 hydrocarbons, but facilitated the production of valuable products, C5+ hydrocarbons. In particular, in the case of C19+ hydro- performance of active iron carbides, possibly induced by an increased ratio of ε'-carbide (Fe_{2.2}C) to (http://creativecommons.org/licenses/by-nc-nd/3.0/). y-carbide (Fe_{2.5}C) and a decreased fraction of inactive bulk carbons. © 2014 The Authors, Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license carbons, the target products of low-temperature FTS (<280 °C), both selectivity and productivity showed a great increase with an increased inlet CO2 content during activation. We attribute the advantageous performance of the catalysts activated by CO2-containing syngas to the improvement in the effective