Evidence of Spin Reorientation by Mössbauer Analysis

Bo Ra Myoung, Sam Jin Kim, and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

(Received 21 February 2014, Received in final form 23 April 2014, Accepted 28 April 2014)

We report the crystallographic and magnetic properties of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ by means of X-ray diffractometer (XRD), a superconducting quantum interference device (SQUID) magnetometer, and a Mössbauer spectroscopy. In particular, $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was studied by Mössbauer analysis for evidence of spin reorientation. The chalcogenide material $Ni_{0.3}Fe_{0.7}Ga_2S_4$ was fabricated by a direct reaction method. XRD analysis confirmed that $Ni_{0.3}Fe_{0.7}Ga_2S_4$ has a 2-dimension (2-D) triangular lattice structure, with space group *P-3m1*. The Mössbauer spectra of $Ni_{0.3}Fe_{0.7}Ga_2S_4$ at spectra at various temperatures from 4.2 to 300 K showed that the spectrum at 4.2 K has a severely distorted 8-line shape, as spin liquid. Electric quadrupole splitting, E_Q has anomalous twopoints of temperature dependence of E_Q curve as freezing temperature, $T_f = 11$ K, and Néel temperature, $T_N = 26$ K. This suggests that there appears to be a slowly-fluctuating "spin gel" state between T_f and T_N , caused by non-paramagnetic spin state below T_N . This comes from charge re-distribution due to spin-orientation above T_R and T_N , due to the changing T_N at various temperatures. Isomer shift value (0.7 mm/s $T_N = 26$ K) mm/s) shows that the charge states are ferrous (Fe²⁺), for all temperature range. The Debye temperature for the octahedral site was found to be $T_N = 260$ K.

Keywords: mössbauer spectroscopy, spin reorientation, electric quadrupole splitting