Magnetic Properties of Iron-based Catalysts Activated by Various CO₂ Concentrations

Jung Tae LIM and Chul Sung KIM*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Dong Hyun Chun and Ji Chan Park Clean Fuel Laboratory, Korea Institute of Energy Research, Daejeon 305-343, Korea

(Received 27 October 2014, in final form 7 November 2014)

Fresh catalyst samples of $100\text{Fe}/5.26\text{Cu}/4.76\text{K}/18.2\text{SiO}_2$ in part per weight were synthesized by using a combination of a co-precipitation technique and spray-drying method and were activated in situ by using syngas (H₂/CO/xCO₂) with different amounts of CO₂ (x = 0.0, 0.5, 1.0, and 2.0). All activated catalyst samples showed similar XRD patterns, a combination of ferrihydrite, magnetite, χ -carbide, and ε' -carbide, regardless of the CO₂ contents. From the Mössbauer spectra, we also observed a combination of ferrihydrite, magnetite, χ -carbide, and ε' -carbide in all activated catalyst samples. The main compound of the activated catalyst sample activated by using CO₂-free syngas (H₂/CO) was magnetic χ -carbide, and the main compound changed from χ -carbide to ferrihydrite with increasing CO₂ concentration, confirmed by both, Mössbauer spectra and XRD pattern.

PACS numbers: 82.65.+r, 61.66.Hq, 76.80.+y

Keywords: Catalysts, Mössbauer spectroscopy, Carbide, Ferrihydrite

DOI: 10.3938/jkps.65.1961