Mössbauer Studies of Superparamagnetic Ni_{0.5}Zn_{0.5}Fe₂O₄ Nanoparticles Seung Wha Lee¹ and Chul Sung Kim² ¹Department of New Material Applied Physics, KonKuk University, Chungju 380-701, Korea ²Department of Physics, Kookmin University, Seoul 136-702, Korea Superparamagnetic $Ni_{0,5}Zn_{0,5}Fe_2O_4$ nanonoparticle is fabricated by a sol-gel method. The magnetic and structural properties as a function of annealing temperature were characterized by using X-ray diffactometry (XRD), Mössbauer spectroscopy, and vibrating sample magnetometry (VSM) as well as scanning electron microscope (SEM). $Ni_{0.5}Zn_{0.5}Fe_2O_4$ powder that was annealed at 573 K has spinel structure and behaved superparamagnetically at room temperature. The estimated size of superparammagnetic $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticle is around 7 nm. The hyperfine fields of the A and B patterns at 4.2 K were found to be 514 and 481 kOe, respectively. The blocking temperature (T_B) of superparammagnetic $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticle is about 90 K. The magnetic anisotropy constant of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ nanoparticle were calculated to be 1.6 \times 10⁶ erg/cm³ Index Terms—Blocking temperature, Mössbauer spectroscopy, Ni_{0,5} Zn_{0,5} Fe₂O₄, sol-gel method, superparamagnetic.