

Spin reorientation in multiferroic spinel Co_{0.5}Fe_{0.5}Cr₂O₄ with Mössbauer spectroscopy

Bo Ra Myoung and Chul Sung Kim^{a)}
Department of Physics, Kookmin University, Seoul 136-702, South Korea

(Presented 5 November 2014; received 22 September 2014; accepted 12 December 2014; published online 27 April 2015)

We studied the magnetic properties of multiferroic spinel $\text{Co}_{0.5}\text{Fe}_{0.5}\text{Cr}_2\text{O}_4$, especially focusing on the spin-ordering, spin-reorientation, and charge re-distribution effects. From the Rietveld refinement analysis, the crystal structure was identified to be a normal cubic spinel of Fd-3m. Based on the temperature-dependent measurements of the magnetization and magnetic hyperfine field (H_{hf}) , Curie temperature (T_C) of $\text{Co}_{0.5}\text{Fe}_{0.5}\text{Cr}_2\text{O}_4$ was determined to be around $86\,\text{K}$ where $H_{hf}\cong 0$. From the change of slope in the M-T curve, the conical-spiral magnetic ordering temperature was determined to be $20\,\text{K}$, which coincides with H_{hf} measurement. Also, we have observed the decrease in the slope of the electric quadrupole splitting (ΔE_Q) curve above $20\,\text{K}$, suggesting that the change in ΔE_Q around T_S is originated from charge redistribution due to the spin-relocation associated with the distortion of each tetrahedral site around Fe^{2+} ion above T_S . This indicates that $\text{Co}_{0.5}\text{Fe}_{0.5}\text{Cr}_2\text{O}_4$ has the noncollinear conical-spiral spin ordering with incommensurate spin structure below T_S , while above T_S , it has ferrimagnetic spin ordering with commensuration in the collinear state. In addition, the Jahn-teller distortion temperature is measured to be around $155\,\text{K}$, since both ΔE_Q and Δ_1 of $^5T_{2g}$ band decrease rapidly with increasing temperature and disappear around $155\,\text{K}$. © $2015\,\text{AIP Publishing LLC}$.

[http://dx.doi.org/10.1063/1.4918968]