Investigation of the Magnetic Properties of Dy doped Nd-Fe-B Permanent Magnet by Using Mössbauer Spectroscopy

Jung Tae Lim, HyunKyu Kim and Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 136-702, Korea

Sung Yong An and Kang Ryong Choi
Corporate R&D Institute, Samsung Electro-Mechanics, Suwon 443-743, Korea

(Received 14 April 2015, in final form 21 May 2015)

The crystal and the magnetic properties of $(Nd_{35.00-x}Dy_x)Fe_{bal}$. $Cu_{0.15}Co_{1.50}Al_{0.20}Nb_{0.35}B_{1.00}$ (wt.%; x = 3.50, 6.00, and 8.00) samples are investigated by using x-ray diffractometer (XRD), vibrating smple magnetometer (VSM), and Mössbauer spectrometer. The crystal structure is determined to be tetragonal with the $P4_2/mnm$ space group. The saturation magnetization (M_s) decreases while the coercivity (H_c) increases with increasing Dy ion concentration. Based on the zero-filed-cooled (ZFC) curves, all the samples show spin reorientation, and the spin-reorientation temperature T_{SR} decreases with increasing Dy ion concentration. The Mössbauer spectra measured at 295 K show decreasing $< H_{hf} >$ with increasing Dy concentration, and the abrupt changes both in the magnetic hyperfine field (H_{hf}) and the electric quadrupole shift (E_Q) at temperatures around T_{SR} .

PACS numbers: 82.65.+r, 61.66.Hq, 76.80.+y

Keywords: Mössbauer spectroscopy, Nd-Fe-B, Permanent magnet, Spin transition

DOI: 10.3938/jkps.66.1913