

Nanoscale

COMMUNICATION

View Article Online
View Journal | View Issue

Cite this: Nanoscale, 2015, 7, 16616

Received 8th July 2015, Accepted 13th September 2015

DOI: 10.1039/c5nr04546k

www.rsc.org/nanoscale

A new synthesis of carbon encapsulated Fe₅C₂ nanoparticles for high-temperature Fischer–Tropsch synthesis†

Seok Yong Hong,^{a,b} Dong Hyun Chun,^{a,b} Jung-Il Yang,^a Heon Jung,^a Ho-Tae Lee,^a Sungjun Hong,^a Sanha Jang,^a Jung Tae Lim,^c Chul Sung Kim^c and Ji Chan Park*^{a,b}

Using a simple thermal treatment under a CO flow, uniform micrometer-sized iron oxalate dihydrate cubes prepared by hydrothermal reaction were transformed into Fe₅C₂@C nanoparticles to form a mesoporous framework; the final structure was successfully applied to the high-temperature Fischer–Tropsch reaction and it showed high activity (CO conversion = 96%, FTY = 1.5×10^{-4} mol_{CO} g_{Fe}^{-1} s⁻¹) and stability.