Investigation of Magnetic Properties of Sr-Doped Ba_{3-x}Sr_xCo₂Fe₂₄O₄₁ Z-type Hexaferrite by Mössbauer Spectroscopy

Jung Tae Lim, Taejoon Kouh, and Chul Sung Kim

Department of Physics, Kookmin University, Seoul 136-702, Korea

The polycrystalline $Ba_{3-x}Sr_xCo_2Fe_{24}O_{41}$ (x=0.0, 0.5, 1.0, and 1.5) samples were synthesized by the solid-state reaction method. The crystalline structure of the samples was found to be a hexagonal structure with a space group of $P6_3/mmc$. The lattice constants a_0 , c_0 , and V_u of the samples decrease with increasing Sr concentration. From the field-dependent hysteresis curves under 10 kOe at 295 K, the values of M_s increase while the values of H_c decrease. The zero-field-cooled magnetization curves under 100 Oe between 4.2 and 300 K show the spin transition, and the value of T_s decreases from 230 K for x=0.0 to 135 K for x=1.5 with increasing Sr concentration due to the reduction of planar anisotropy with the difference in ionic radius between Ba^{2+} and Sr^{2+} ions. From the isomer shift value (δ) obtained from Mössbauer spectra, the charge states of all samples are determined to be Fe^{3+} high spin state. With increasing Sr concentration, the reduction of hyperfine field $\langle H_{hf} \rangle$ suggests the change in hyperfine interaction between Fe ions because of the larger ionic radius of Ba^{2+} ion than that of Sr^{2+} ion, leading to decreasing M_s .

Index Terms— $Ba_{3-x}Sr_xCo_2Fe_{24}O_{41}$, Mössbauer spectroscopy, Z-type hexaferrite.