Mössbauer Studies Magnetic Properties of BaCo_{2-x}Zn_xFe₁₆O₂₇

Hyunkyu Kim¹, Byung Ug Ko¹, In-Bo Shim¹, Bo Wha Lee², and Chul Sung Kim¹

¹Department of Physics, Kookmin University, Seoul 136-702, Korea ²Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791, Korea

The BaCo_{2-x}Zn_xFe₁₆O₂₇ (x=0,0.5,1) samples were prepared by solid-state reaction method. The prepared samples are single-phased, and their crystal structures are determined to be hexagonal with a space group of P6₃/mmc from Rietveld refinement analysis. The magnetic saturation values were increasing, and the values of coercivity were decreasing with increasing Zn contents. The experimentally measured temperature dependence of magnetization curves shows magnetic transitions. We have measured Mössbauer spectroscopy at various temperatures to investigate microscopic magnetic properties. We analyze the obtained spectra with the five magnetic sites of $4f_{VI}$, $6g+4f_{VI}$, $4e_{IV}+4f_{IV}$, $12k_{VI}$, and $2d_{V}$. In addition, from the Mössbauer spectra, we notice the changes in the magnetic hyperfine field and electric quadrupole shift. The substituted Zn²⁺ ions are located at tetrahedral site, and increase the M_{S} . Curie temperatures were determined from zero-field-cooled magnetizations measurement.

Index Terms—BaCo₂FeO₂₇, Co₂W, Mössbauer spectroscopy, spin reorientation.