

Contents lists available at ScienceDirect

Materials Research Bulletin

Structural and magnetic properties of lithium cathode materials $Li_xFe_{1/3}Co_{1/3}Ni_{1/3}PO_4$ (x = 0, 1)

Hyunkyung Choi^a, Hyung Joon Kim^b, In-Bo Shim^a, In Kyu Lee^a, Chul Sung Kim^{a,*}

ARTICLE INFO

Article history:

Received 13 January 2017 Received in revised form 8 May 2017 Accepted 14 May 2017 Available online 17 May 2017

Keywords:

- B. Magnetic properties
- B. Phase transitions
- C. X-ray diffraction
- C. Mössbauer spectroscopy

ABSTRACT

LiFe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ and its fully deintercalated Fe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ compounds were prepared by the vacuum-sealed solid state reaction method, and chemical-oxidation process with reaction of LiFe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ and No $_2$ BF $_4$ in acetonitrile. The crystal structure of LiFe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ is orthorhombic with the space group of *P*nma, which is same as Fe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ during deintercalation. Temperature-dependent magnetization curves of Li $_x$ Fe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ exhibit the enhancement of antiferromagnetic ordering due to the valence transition of transition metal ions with the increase in the Néel temperature from 35 K for x = 0 to 51 K for x = 1. The room-temperature Mössbauer spectra shows the valence transition with the LiFe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ exhibiting Fe $^{2+}$ doublet whereas fully deintercalated Fe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ showing one Fe $^{3+}$ doublet induced by the lithium ion diffusion. Experimental determined effective moment of Li $_x$ Fe $_{1/3}$ Co $_{1/3}$ Ni $_{1/3}$ PO $_4$ was found to be 5.63 μ_B for x = 0 and 6.95 μ_B for x = 1, which can be interpreted as incomplete absence of orbital contribution by crystal field around distorted MO $_6$ octahedron.

© 2017 Elsevier Ltd. All rights reserved.

^a Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

b Basic Materials & Chemicals R&D Center, LG Chem Research Park, Daejeon 34122, Republic of Korea