

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

journal homepage: www.elsevier.com/locate/jmmm

Effects of isovalent substitution on structural and magnetic properties of nanocrystalline $Y_{3-x}Gd_xFe_5O_{12}$ (0 < x < 3) garnets

Sandeep Kumar Singh Patel ^{a,1}, Jae-Hyeok Lee ^a, Biswanath Bhoi ^a, Jung Tae Lim ^b, Chul Sung Kim ^b, Sang-Koog Kim ^{a,*}

ARTICLE INFO

Article history:
Received 2 October 2017
Received in revised form 18 November 2017
Accepted 2 December 2017
Available online 6 December 2017

ABSTRACT

We fabricated Gd-doped $Y_3Fe_5O_{12}$ (YIG) nanoparticles by a modified sol-gel method. We investigated the effects of isovalent Gd^{3+} -ion substitution on the structural and magnetic properties of $Y_{3-x}Gd_xFe_5O_{12}$ ($0 \le x \le 3$) nanoparticles. Isovalent Gd^{3+} -ion substitution for Y^{3+} leads to lattice expansion and change in the Fe(a)-O-Fe(d) bond angle. The X-ray photoemission spectroscopy and Mössbauer measurements revealed a high-spin state of Fe^{3+} . The Mössbauer analysis showed an increase in the $Fe^{3+}_{(d)}/Fe^{3+}_{(a)}$ ratio, indicating a relocation of Y^{3+} ions at the dodecahedral sites and Fe^{3+} ions at the octahedral sites. The magnetic properties could be explained in terms of magnetic-structural evolution with increasing Gd^{3+} content. The field dependence of magnetization indicated a clear decrease of the magnetization while the magnetic anisotropy first decreases and then increases with the increase of Gd^{3+} content. These Gd^{3+} -ionsubstituted nanocrystalline garnet ferrites are suitable for use in a variety of magneto-optical applications.

© 2017 Elsevier B.V. All rights reserved.

^a National Creative Research Initiative Center for Spin Dynamics and Spin-Wave Devices, Nanospinics Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, South Korea

^b Department of Physics, Kookmin University, Seoul 02707, South Korea