\$50 ELSEVIER Contents lists available at ScienceDirect ## Chemical Engineering Journal journal homepage: www.elsevier.com/locate/cej # Nitrogen doped BiFeO₃ with enhanced magnetic properties and photo-Fenton catalytic activity for degradation of bisphenol A under visible light Yuefa Jia^a, Changjin Wu^a, Deok-Hyeon Kim^a, B.W. Lee^a, S.J. Rhee^a, Yun Chang Park^b, Chul Sung Kim^c, Q.J. Wang^{d,*}, Chunli Liu^{a,*} - a Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 17035, Republic of Korea - ^b Department of Measurement and Analysis, National Nanofab Center, Daejeon 34141, Republic of Korea - ^c Department of Physics, Kookmin University, Seoul 02707, Republic of Korea - ^d College of Physics and Electronic Information, Yunnan Normal University, Yunnan, Kunming 650500, China ## HIGHLIGHTS - N doped BiFeO₃ have been synthesized using melamine as the N precursor. - The band gap and saturation magnetization of N doped BiFeO₃ is tunable. - N doped BiFeO₃/H₂O₂ shows enhanced efficient degradation of bisphenol A. - Addition of L-cysteine can further enhanced photodegradation performance - A mechanism of bisphenol A degradation was proposed. ## GRAPHICAL ABSTRACT ## ARTICLE INFO Keywords: Nitrogen doped BiFeO₃ Ligand L-Cysteine Catalyst Bisphenol A ## ABSTRACT In the present work, N doped BiFeO $_3$ (N-BFO) nanoparticles have been synthesized via a sol-gel rapid calcination technique using melamine ($C_3H_6N_6$) as the N precursor. It is found that N-doping could effectively narrow the band gap of BFO, which obviously enhanced the visible light adsorption capability. Meanwhile, N-doping could lead to significant increase in the magnetization of BFO. Particularly, the saturation magnetization (M_s) was increased up to 0.35 emu/g (as compared to that of pure BFO: 0.07 emu/g) when 12.5 mmol N doping precursor was used (12.5N-BFO). The catalytic performance of N-BFO nanoparticles was evaluated through the degradation of bisphenol A (BPA) under visible light irradiation. 12.5N-BFO was found to be an efficient catalyst of BPA, and the addition of H_2O_2 (10 mmol/L) or H_2O_2 (10 mmol/L)/L-cysteine (0.25 mmol/L) can further enhance the degradation efficiency up to 60% and 94% within 120 min, respectively. The 12.5N-BFO nanoparticles were very stable during photocatalytic processes and their photo-Fenton catalytic activity can be retained even after three recycling processes.