

Contents lists available at ScienceDirect

Applied Catalysis A, General

journal homepage: www.elsevier.com/locate/apcata

A durable nanocatalyst of potassium-doped iron-carbide/alumina for significant production of linear alpha olefins via Fischer-Tropsch synthesis

Ji Chan Park^{a,b,*}, Sanha Jang^a, Geun Bae Rhim^a, Jin Hee Lee^a, Hyunkyoung Choi^c, Heon-Do Jeong^a, Min Hye Youn^a, Dong-Wook Lee^d, Kee Young Koo^e, Shin Wook Kang^a, Jung-Il Yang^a, Ho-Tae Lee^a, Heon Jung^a, Chul Sung Kim^{c,**}, Dong Hyun Chun^{a,b,*}

^a Clean Fuel Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

^b Advanced Energy and System Technology, University of Science and Technology, Daejeon 34113, Republic of Korea

^c Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

^d Separation and Conversion Materials Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

^e Hydrogen Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea

ARTICLE INFO

ABSTRACT

Keywords: Fischer-Tropsch synthesis Linear alpha olefins High durability Iron-carbide Alkali promoter Improvement of activity, selectivity, and stability of the catalyst used in Fischer-Tropsch synthesis (FTS) to produce targeted hydrocarbon products has been a major challenge. In this work, the potassium-doped iron-carbide/alumina (K-Fe₅C₂/Al₂O₃), as a durable nanocatalyst containing small iron-carbide particles (~ 10 nm), was applied to high-temperature Fischer-Tropsch synthesis (HT-FTS) to optimize the production of linear alpha olefins. The catalyst, suitable under high space velocity reaction conditions $(14-36 \text{ N L g}_{cat}^{-1} \text{ h}^{-1})$ based on the well-dispersed potassium as an efficient base promoter on the active iron-carbide surface, shows very high CO conversion (up to $\sim 90\%$) with extremely high activity (1.41 mmol_{CO} g_{Fe}⁻¹ s⁻¹) and selectivity for C₅-C₁₃ linear alpha olefins.