

Contents lists available at ScienceDirect

Journal of Magnetism and Magnetic Materials

Research articles

Antiferromagnetic ordering in lithium deintercalated $Fe_{1-x}Zn_xPO_4$: A Mössbauer spectroscopy study

Hyunkyung Choi, Mun Hwan Kim, Chul Sung Kim*

Department of Physics, Kookmin University, Seoul 02707, Republic of Korea

ARTICLE INFO

Keywords:
Battery
Cathode
Mössbauer spectroscopy
Phase transition
X-ray diffraction

ABSTRACT

Various compositions of $Fe_{1-x}Zn_xPO_4$ ($x=0.1,\,0.2,\,0.3,\,$ and 0.5) were synthesized by solid-state reaction and chemical lithium deintercalation processes, and their magnetic properties were characterized based on Mössbauer analysis. The synthesized $Fe_{1-x}Zn_xPO_4$ have orthorhombic structures with space group *Pnma*. The magnetization curves of $Fe_{1-x}Zn_xPO_4$ show the antiferromagnetic behaviors and magnetic phase transition caused by the strong crystal field in the FeO_6 octahedral sites. The Néel temperature (T_N) of $Fe_{1-x}Zn_xPO_4$ for T_N appeared to have eight Lorentzian lines with antiferromagnetic ordering. The charge state of Fe ions is the high spin state of T_N as characterized by an isomer shift (T_N 0 - 2.8–0.43 mm/s). The value of magnetic hyperfine field (T_N 1) decreased with increasing T_N 2 concentration because the superexchange interaction via T_N 3 gradually decreased with increasing T_N 4 concentration due to the substitution of a T_N 5 ion for the T_N 6 gradually decreased with increasing T_N 6 concentration due to the substitution of a T_N 6 ion for the T_N 8 gradually decreased with increasing T_N 8 concentration due to the substitution of a T_N 9 ion for the T_N 9 gradually decreased with increasing T_N 9 concentration due to the substitution of a T_N 9 ion for the T_N 9 gradually decreased with increasing T_N 9 concentration due to the substitution of a T_N 9 ion for the T_N 9 gradually decreased with increasing T_N 9 concentration.