

Investigation on the magnetic and Mössbauer spectroscopy of $^{57}\mbox{Fe}$ doped LiMnPO $_4$

Hyunkyung Choi¹ · Jae Yeon Seo¹ · Chul Sung Kim¹

Received: 20 January 2021 / Accepted: 9 June 2021 © Akadémiai Kiadó, Budapest, Hungary 2021

Abstract

The ⁵⁷Fe doped LiMnPO₄ cathode with potential applications in Li-ion batteries was prepared by solid-state reaction. The magnetic susceptibility ordered antiferromagnetically at Néel temperature ($T_N = 34$ K). The spin reorientation temperature (T_S) and effective moment were determined to be 8 K and 5.78 μ_B . We obtained the Mössbauer spectra at various temperatures and fitted the spectra below T_N to eight absorption lines. The behavior of the magnetic hyperfine field and the quadrupole splitting change with increasing temperature above T_S indicates that the quenched orbital angular moment is due to a strong crystal field at the Mn(Fe)O₆ site.

Keywords Cathode \cdot ⁵⁷Fe Mössbauer spectroscopy \cdot Lithium batteries \cdot Spin reorientation