

Article

Effects of Silica Shell Encapsulated Nanocrystals on Active χ-Fe₅C₂ Phase and Fischer–Tropsch Synthesis

Seunghee Cha 1, Heewon Kim 1, Hyunkyung Choi 2, Chul Sung Kim 2 and Kyoung-Su Ha 1,*

- Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Korea
- Department of Physics, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea
- Correspondence: philoseus@sogang.ac.kr; Tel.: +82-2-3274-4859

Abstract: Among various iron carbide phases, χ -Fe₅C₂, a highly active phase in Fischer–Tropsch synthesis, was directly synthesized using a wet-chemical route, which makes a pre-activation step unnecessary. In addition, χ -Fe₅C₂ nanoparticles were encapsulated with mesoporous silica for protection from deactivation. Further structural analysis showed that the protective silica shell had a partially ordered mesoporous structure with a short range. According to the XRD result, the sintering of χ -Fe₅C₂ crystals did not seem to be significant, which was believed to be the beneficial effect of the protective shell providing restrictive geometrical space for nanoparticles. More interestingly, the protective silica shell was also found to be effective in maintaining the phase of χ -Fe₅C₂ against re-oxidation and transformation to other iron carbide phases. Fischer–Tropsch activity of χ -Fe₅C₂ in this study was comparable to or higher than those from previous reports. In addition, CO₂ selectivity was found to be very low after stabilization.

Keywords: Fischer-Tropsch; iron carbide; encapsulation; ordered mesoporous silica