Magnetic Properties of Cr³⁺ Substituted BaFe₁₂O₁₉ Powders Grown by a Sol-gel Method

Chul Sung Kim, Sung Yong An, and Ji Hee Son

Department of Physics, Kookmin University, Seoul 136-702, Korea

Jae-Gwang Lee

Department of Applied Physics, Konkuk University, Chungbuk 380-701, Korea

Hang Nam Oak

Department of Physics, Yonsei University, Seoul 120-749, Korea

Abstract — Cr^{3+} substituted Ba-hexaferrite was fabricated by a sol-gel method. The crystallographic and magnetic properties of BaFe_{12x}Cr_xO₁₉ ($0 \le x \le 7$) were investigated XRD, Rutherford back-scattering spectrometry, vibrating sample magnetometry and Mössbauer spectroscopy. The crystal structure was found to be magnetoplumbite, typical of M-type hexagonal ferrite. By substituting Fe³⁺ in BaFe₁₂O₁₉ by Cr³⁺, we have been able to attribute the Mössbauer parameters to the 5 crystallographic sites of the structure. Only the octahedral sublattices were occupied by Cr ions. The isomer shifts indicate that the valence state of the Fe ions was Fe³⁺. The Curie temperatures of BaFe_{12x}Cr_xO₁₉ decreased linearly incrasing Cr-substitution, at a rate of 55 K/Cr atom.

Index Terms — Ba-ferrite, sol-gel, Mössbauer spectroscopy, Rutherford back-scattering