JOURNAL OF APPLIED PHYSICS VOLUME 87, NUMBER 9 1 MAY 2000 ## Charge ordering and Mössbauer studies of single crystal $R_{1/3}Sr_{2/3}FeO_3$ (R=Pr, Sm, and Nd) Young Rang Uhm, Seung Wha Lee, a) and Key-Taeck Park Department of Physics, Kookmin University, Seoul 136-702, Korea Y. Tomioka and Y. Tokura^{b)} Joint Research Center for Atom Technology, Tsukuba 305, Japan Chul Sung Kim^{c)} Department of Physics, Kookmin University, Seoul 136-702, Korea Single crystals of R_{1/2}Sr_{2/2}FeO₃ (R=Pr, Nd, and Sm) were synthesized by the floating zone method and their magnetic properties and charge ordering (CO) transition related to lattice dynamics were systematically investigated. Mössbauer spectra of R_{1/3}Sr_{2/3}FeO₃ were taken at various temperatures ranging from 12 K to room temperature. The charge disproportionation in Pr_{1/3}Sr_{2/3}FeO₃ was detected below 190 K, in which two kinds of iron with valence states Fe³⁺ and Fe⁵⁺ were found with ratio of 2:1. The iron with valence state Fe^{4+} in $Pr_{1/3}Sr_{2/3}FeO_3$ coexists at and above 150 K, and its ratio increased from 13% to 66% as the temperature rose. The $(Nd_{1-y}Sm_y)_{1/3}Sr_{2/3}FeO_3$ (y = 0.0, 0.2, 0.4, 0.6, and 0.8) with least lattice distortion underwent a CO phase transition at and below $T_{\rm CO} = 163 \, \rm K$ and accompanying the charge disproportionation into nominally Fe³⁺ and Fe⁵⁺ sites as well as a canted antiferromagnetic spin ordering. In this charge ordering state, a sequence of Fe⁺³Fe⁺³Fe⁺⁵Fe⁺³Fe⁺⁵Fe⁺⁵ exists aligned along the [111] direction of the pseudocubic perovskite structure. In this study, the CO at x = 2/3 disappeared in the case of R=Sm. Indeed, disappearance of the CO transition was detected by systematic decrease of a spontaneous magnetization with increase of y in the system of $(Nd_{1-y}Sm_y)_{1/3}Sr_{2/3}FeO_3$. This result shows that the charge ordering state was realized with strong hybridization between the Fe and O atoms. © 2000 American Institute of Physics. [S0021-8979(00)63908-7]