ELSEVIER

Magnetic properties and Mössbauer studies of $\mathrm{Gd}_{1-x} \mathrm{Sr}_{x} \mathrm{FeO}_{3-y}(x=0.25,0.75)$
 Young Rang Uhm ${ }^{\text {a }}$, Jung Chul Sur ${ }^{\text {b }}$, Chul Sung Kim ${ }^{\text {a,* }}$
 ${ }^{\text {a }}$ Department of Physics, Kookmin University, Seoul 136-702, South Korea
 ${ }^{\mathrm{b}}$ Department of Physics, Wongwang University, Igsan 570-749, South Korea

Abstract

Perovskite $\mathrm{Gd}_{1-x} \mathrm{Sr}_{x} \mathrm{FeO}_{3-y}(x=0.25$ and 0.75$)$ powders have been studied by X-ray diffraction, Mohr's salt analysis, vibrating sample magnetometer, and Mössbauer spectroscopy. X-ray diffraction patterns show that their crystal structures are orthorhombic for $x=0.25$ and cubic for $x=0.75 .{ }^{57} \mathrm{Fe}$ Mössbauer spectra of the $\mathrm{Gd}_{1-x} \mathrm{Sr}_{x} \mathrm{FeO}_{3-y}$ have been taken at various temperatures ranging from 4.2 to 850 K . It is found that Néel temperatures for $x=0.25$ and 0.75 are 685 and 270 K , respectively. Mössbauer spectra of $\mathrm{Gd}_{0.75} \mathrm{Sr}_{0.25} \mathrm{FeO}_{3-y}$ powders have been taken at various temperatures ranging from 13 to 620 K . The Néel temperature decreases with the increase of the Sr concentration, which suggests that the superexchange interaction for $\mathrm{Gd}-\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$ is stronger than that for $\mathrm{Sr}-\mathrm{Fe}-\mathrm{O}-\mathrm{Fe}$. Mössbauer spectrum at 13 K consists of magnetic sextet components arising from different charge states of iron ions. In the orthorhombic phases $(x=0.25)$, the charge states coexist Fe^{3+} and Fe^{4+} (high spin) and the charge states coexist Fe^{3+} and Fe^{4+} (low and high spin) in the cubic phases ($x=0.75$). Magnetic susceptibility measurements by using a vibrating sample magnetometer show that $\mathrm{Gd}_{1-x} \mathrm{Sr}_{x} \mathrm{FeO}_{3-y}$ behavior is weak-ferromagnetic due to canted spin for $x=0.75$ and antiferromagnet for $x=0.25$. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Mössbauer spectroscopy; Mohr's salt; Superexchange interaction; Weak-ferromagnetic

