Effect of iron state on crystallization and dissolution in Fe₂O₃-CaO-SiO₂ glasses YONG-KEUN LEE¹, KYOUNG-NAM KIM¹, SE-YOUNG CHOI², CHUL-SUNG KIM³ ¹Research Institute of Dental Materials, Yonsei University College of Dentistry, Seoul 120-752, Korea ²Department of Ceramic Engineering, Yonsei University, Seoul 120–749, Korea ³Department of Physics, Kookmin University, Seoul 136-702, Korea E-mail: kimkn@yumc.yonsei.ac.kr The possibility of iron-containing glasses as thermoseeds for hyperthermia of bone tumor was reported previously. There is, however, no report about the effect of iron state on the crystallization of magnetite and the resultant properties. The iron states were determined by Mössbauer spectroscopy in Fe_2O_3 -CaO-SiO₂ system. It was found that the higher CaO content interrupts the crystallization of magnetite crystallites as well as the oxidation of iron, that is, the transformation from Fe³⁺ to Fe²⁺. A sample containing large amounts of Fe²⁺ showed the faster increment of temperature when the alternating magnetic field was applied. In order to use the thermoseed for a hyperthermia, we can say that the composition with low CaO content is most useful. © 2000 Kluwer Academic Publishers