Atomic Migration and Superexchange Interaction in Ni_{0.1}Cu_{0.9}Fe₂O₄ Woo Chul Kim, Sam Jin Kim, Seung Wha Lee, Sang Hee Ji, and Chul Sung Kim, Member, IEEE Abstract—Ni_{0.1} Cu_{0.9} Fe₂ O₄ was studied with X-ray diffraction and Mössbauer spectroscopy. The crystal structure was found to be a cubic spinel with the lattice constant $a_0 = 8.386 \pm 0.005$ Å. The Néel temperature was determined to be $T_N = 755$ K for a heating rate of 5K/min. The Mössbauer spectra consisted of two six-line patterns corresponding to Fe³⁺ at the tetrahedral (A) and octahedral (B) sites. Debye temperatures for A and B sites were found to be 568 ± 5 K and 194 ± 5 K, respectively. Atomic migration of Ni_{0.1} Cu_{0.9} Fe₂ O₄ starts near 350K and increases rapidly with increasing temperature to such a degree that 71% of the ferric ions from the A sites moved to the B sites at 550K. The temperature dependence of the magnetic hyperfine field of Ni_{0.1} Cu_{0.9} Fe₂ O₄ was explained by the Néel theory of ferrimagnetism using three superexchange integrals: $J_{A-B} = -29.2k_B$, $J_{A-A} = -21.9k_B$, $J_{B-B} = 0.5k_B$. Index Terms—Atomic migration, Mössbauer spectroscopy, Ni_{0,1}Cu_{0,9}Fe₂O₄ ferrite, superexchange integrals.