Mössbauer Studies of Superexchange Interactions in NiFe₂O₄

Sam Jin Kim, Woo Chul Kim and Chul Sung Kim* Department of Physics, Kookmin University, Seoul 136-702

Seung Wha Lee

School of Electrical and Electronics Engineering, Chungbuk National University, Cheongju 361-173

(Received 10 November 1999)

NiFe₂O₄ has been studied using Mössbauer spectroscopy and X-ray diffraction. The crystal was found to have a inverse cubic spinel structure with the lattice constant a_0 =8.326±0.003 Å. Mössbauer spectra of NiFe₂O₄ was obtained at various absorber temperatures from 13 K to the Néel temperature. The Mössbauer spectra consisted of two sets of six lines corresponding to Fe⁺³ at the tetrahedral (A) and the octahedral (B) sites. The temperature dependence of the magnetic hyperfine fields at ⁵⁷Fe nuclei at the tetrahedral (A) and the octahedral (B) sites was analyzed by the Néel theory of ferrimagnetism. The intersublattice A-O-B and intrasublattice A-O-A superexchange interactions were found to be antiferromagnetic with strengths of J_{A-B} =-25.0 k_B and J_{A-A} =-4.0 k_B , respectively, while the intrasublattice B-O-B superexchange interaction is ferromagnetic with a strength J_{B-B} =4.2 k_B .