Magnetic properties of the spinel phase for Fe_xCu_{1_x}Rh₂Se₄

Chul Sung Kim, a) J. Childress, and C. L. Chien

Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218

Fe_xCu_{1-x}Rh₂Se₄ is found to crystallize with a pure spinel structure in the composition range $0 \le x \le 0.3$. Mössbauer spectra of Fe_xCu_{1-x}Rh₂Se₄ have been taken at various temperatures

Fe_xCu_{1-x}Rh₂Se₄ is found to crystallize with a pure spinel structure in the composition range $0 \le x \le 0.3$. Mössbauer spectra of Fe_xCu_{1-x}Rh₂Se₄ have been taken at various temperatures ranging from 4.2 K to room temperature. Analysis of Mössbauer spectra at 4.2 K indicate that the effective hyperfine field increases with increasing iron concentration x and that the quadrupole splitting is negligible. The absence of quadrupole splitting above the magnetic ordering temperature T_N indicates that iron ions occupy only the tetrahedral sites. The isomer shifts indicate that the charge states of the Fe ions have a ferric character. Magnetic susceptibility measurements by dc SQUID magnetometry show that long-range superexchange interactions on the tetrahedral sites are antiferromagnetic.