JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 11 1 JUNE 2001

Anisotropic hyperfine field fluctuation in Sr₂FeMoO₆

Sung Baek Kim, Key Taeck Park, and Chul Sung Kim^{a)} Department of Physics, Kookmin University, Seoul 136-702, Korea

The double perovskite Sr₂FeMoO₆ has been studied by the Mössbauer technique, neutron, and x-ray diffraction. The structure is found to be tetragonal with lattice constants $a_0 = 5.5729 \,\text{Å}$ and c_0 =7.9077 Å. Mössbauer spectra and neutron diffraction measurements of Sr₂FeMoO₆ have been taken at various temperatures ranging from 10 to 473 K. The low-field magnetoresistance magnitude $(\Delta \rho/\rho_0)$ at 500 Oe was 3.1% and 1.8% at 77 and 300 K, respectively. As the temperature increases toward to the Curie temperature, T_C = 425 K. Mössbauer spectra show the line broadening and 1, 6 and 3, 4 linewidth difference because of anisotropic hyperfine field fluctuation. The anisotropic field fluctuation of $+H(P_{\perp}=0.85)$ was great than $-H(P_{\perp}=0.15)$. We also calculated frequency factor and anisotropy energy with values of 9.8 Γ/\hbar and 149.6 erg/cm³, respectively, using the relatively accurate data for $T = 260 \,\mathrm{K}$ which is associated with the large line broadening. © 2001 American Institute of Physics. [DOI: 10.1063/1.1362654]