

Scripta mater. 44 (2001) 1457-1460

www.elsevier.com/locate/scriptamat

ATOMIC MIGRATION AND SUPEREXCHANGE INTERACTION IN CoCr_{0.1}Fe_{1.9}O₄

Sung Yong An^a, Seung Wha Lee^b, Sam Jin Kim^a and Chul Sung Kim^a
^aDepartment of Physics Kookmin University, Seoul, 136-702, Korea ^bDepartment of Electronics
Eng., Chungju National University, Chungju 380-702, Korea

(Received August 21, 2000) (Accepted in revised form December 9, 2000)

Keywords: Ferrites; Mössbauer spectroscopy; Magnetic properties

Introduction

A ferrimagnetic spinel can be represented by the formula AB_2O_4 , the A-B magnetic interactions between the magnetic atoms on the A (tetrahedral) site and the B (octahedral) sites are stronger than A-A interactions and B-B interactions [1]. The metallic atoms are in an inverse distribution; half the atoms of iron are in the A sites and the other half plus magnetic atoms in the B sites. However, $CoFe_2O_4$ is not completely inverse, and the degree of inversion depends on the heat treatment. The area ratio, Fe(A)/Fe(B), has been found to vary from 0.61 ± 0.04 to 0.87 ± 0.04 for two extremely quenched and slowly cooled $CoFe_2O_4$ samples, respectively [2,3]. $CoCr_2O_4$ is a normal spinel with a Néel temperature of 100 K [4]. In this article, we present our Mössbauer and x-ray results on a slowly cooled $CoCr_{0.1}Fe_{1.9}O_4$ with a special emphasis on the atomic migration as a function of temperature and the Debye temperatures for A and B sites.