

Available online at www.sciencedirect.com

Journal of Magnetism and Magnetic Materials 304 (2006) e152-e154

www.elsevier.com/locate/jmmm

Ferromagnetic properties of anatase $Ti_{1-x}Fe_xO_{2-\delta}$ thin films grown by sol-gel method

Kwang Joo Kim^{a,*}, Young Ran Park^a, Geun Young Ahn^b, Chul Sung Kim^b, Jae Yun Park^c

^aDepartment of Physics, Konkuk University, Seoul 143-701, South Korea
^bDepartment of Physics, Kookmin University, Seoul 136-702, South Korea
^cDepartment of Materials Science and Engineering, University of Incheon, Incheon 402-749, South Korea

Available online 28 February 2006

Abstract

Magnetic and electronic properties of Fe-doped anatase $TiO_{2-\delta}$ thin films grown by a sol-gel method have been investigated by vibrating-sample magnetometry (VSM), conversion electron Mössbauer spectroscopy (CEMS), and Hall effect measurements. VSM measurements revealed that the anatase $Ti_{1-x}Fe_xO_{2-\delta}$ films exhibit ferromagnetic behavior at room temperature for a certain range of x. CEMS spectra revealed that Fe^{2+} and Fe^{3+} ions coexist, substituting the octahedral Ti^{4+} sites. By appropriate Fe doping, the $Ti_{1-x}Fe_xO_{2-\delta}$ films exhibited p-type character but the observed room-temperature ferromagnetism turned out to be independent of the hole concentration.

© 2006 Elsevier B.V. All rights reserved.

PACS: 75.50.Dd; 75.70.Ak; 75.30.Hx

Keywords: Anatase; Ferromagnetism; Thin film; Doping; Mössbauer