Journal of the Korean Physical Society, Vol. 48, No. 4, April 2006, pp. 583~588

Superexchange Interactions in MgFe₂O₄

Seung Wha LEE

Department of Electronic Engineering, Chungju National University, Chungju 380-702

Sam Jin KIM and Chul Sung KIM*

Department of Nano & Electric Physics, Kookmin University, Seoul 136-702

(Received 9 February 2006)

MgFe₂O₄ has been studied using Mössbauer spectroscopy and X-ray diffraction. The crystal was found to have an inverse cubic spinel structure with the lattice constant $a_0 = 8.390 \pm 0.005$ Å. The Mössbauer spectra consisted of two sets of six lines, respectively, corresponding to Fe³⁺ at the tetrahedral (A) and the octahedral (B) sites. The isomer shifts indicated that the valence states of the irons at both A and B sites were in ferric high-spin states. The Néel temperature of MgFe₂O₄ was $T_N = 710 \pm 3$ K. The temperature dependences of the magnetic hyperfine fields at the ⁵⁷Fe nuclei at the tetrahedral (A) and the octahedral (B) sites were analyzed by using the theory of ferrimagnetism. The intrasublattice A-O-B and the intersublattice A-O-A superexchange interactions of MgFe₂O₄ were found to be antiferromagnetic with strengths of $J_{A-B} = -10.0 \pm 0.2 k_B$ and $J_{A-A} = -0.7 \pm 0.2 k_B$, respectively, while the intrasublattice B-O-B superexchange interaction was ferromagnetic with a strength of $J_{B-B} = 1.4 \pm 0.2 k_B$. The Debye temperatures for the A and the B sites of MgFe₂O₄ were found to be $\theta_A = 417 \pm 5$ K and $\theta_B = 331 \pm 5$ K, respectively.

PACS numbers: 61.18.F, 75.30.E, 63.70 Keywords: Mössbauer spectroscopy, Superexchange interaction, Debye temperature