Magnetic Properties, Self-Temperature Rising Characteristics, and Biocompatibility of NiFe₂O₄ Nanoparticles for Hyperthermia Applications Sang Won Lee¹, Seongtae Bae¹, Y. Takemura², E. Yamashita², J. Kunisaki², Shayne Zurn³, and Chul Sung Kim⁴ ¹Biomagnetics Laboratory, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore ²Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan ³WaveRider Inc., Nevis, MN 56467 USA ⁴Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea This paper reports first on the very promising self-heating and temperature rising characteristics of solid-state NiFe $_2$ O $_4$ nanoparticles for hyperthermia applications. NiFe $_2$ O $_4$ nanoparticles were prepared by using both the "high temperature thermal decomposition method (HTTD)" and the "newly modified sol-gel" methods. The magnetic properties and cell-cytotoxic properties of the synthesized NiFe $_2$ O $_4$ nanoparticles were investigated to consider these nanoparticles for *in vivo* hyperthermia applications. The saturation magnetic moments measured by a high sensitive SQUID were between 43.0 and 47.6 emu/g. The cell survival rates of NiFe $_2$ O $_4$ and chitosan coated NiFe $_2$ O $_4$, which were determined by MTT assay, around 85 % and 98.8 %, respectively. The maximum self-heating temperature induced by our specially designed RF-MRI modified L-C circuit was 47.3 °C and the frequency and magnetic field product, H_0 f was 1.07×10^9 Am $^{-1}$ s $^{-1}$. Index Terms—Biocompatibility, hyperthermia, NiFe₂O₄ nanoparticles, self-heating.