Dependence of Frequency and Magnetic Field on Self-Heating Characteristics of NiFe₂O₄ Nanoparticles for Hyperthermia

Seongtae Bae¹, Sang Won Lee¹, Y. Takemura², E. Yamashita², J. Kunisaki², Shayne Zurn³, and Chul Sung Kim⁴

¹Biomagnetics Laboratory (BML), Department of Electrical and Computer Engineering,

National University of Singapore, Singapore 117576, Singapore

²Department of Electrical and Computer Engineering, Yokohama National University, Yokohama 240-8501, Japan ³WaveRider Incorporated, Nevis, MN 56467 USA

⁴ Department of Physics, Kookmin University, Seoul 136-702, Republic of Korea

Self-heating temperature-rising characteristics of nano-size controlled NiFe $_2$ O $_4$ particles were analyzed as a function of applied frequency and magnetic field in order to investigate the physical principle of self-heating and to confirm the possibility for a real *in vivo* hyperthermia application. According to the magnetic properties of 35-nm size NiFe $_2$ O $_4$ nanoparticles, it was confirmed that the physical mechanism of self-heating is mainly attributed to the hysteresis loss. In addition, it was found that the self-heating temperature was linearly increased by increasing frequency and was proportionally square to the applied magnetic field. The self-heating temperature was rapidly increased in an initial stage and then it reached to the maximum. The maximum self-heating temperature was controlled from 2.8 °C to 72.6 °C by changing the applied frequency and magnetic field. The corresponding product of the frequency and the strength of magnetic field H_0 f was between 1.9 \times 10 8 Am $^{-1}$ s $^{-1}$ and 13.4 \times 10 8 Am $^{-1}$ s $^{-1}$. These values are in the biological safety and tolerable range for hyperthermia considering deleterious physiological response of human body during hyperthermia treatment.

Index Terms—Frequency dependence, hyperthermia, magnetic field dependence, NiFe₂O₄ nanoparticle, temperature-rising characteristics.